Relation between Seasonally Detrended Shortwave Infrared Reflectance Data and Land Surface Moisture in Semi-Arid Sahel
نویسندگان
چکیده
In the Sudano-Sahelian areas of Africa droughts can have serious impacts on natural resources, and therefore land surface moisture is an important factor. Insufficient conventional sites for monitoring land surface moisture make the use of Earth Observation data for this purpose a key issue. In this study we explored the potential of using reflectance data in the Red, Near Infrared (NIR), and Shortwave Infrared (SWIR) spectral regions for detecting short term variations in land surface moisture in the Sahel, by analyzing data from three test sites and observations from the geostationary Meteosat Second Generation (MSG) satellite. We focused on responses in surface reflectance to soiland surface moisture for bare soil and early to midgrowing season. A method for implementing detrended time series of the Shortwave Infrared Water Stress Index (SIWSI) is examined for detecting variations in vegetation moisture status, and is compared to detrended time series of the Normalized Difference Vegetation Index (NDVI). It was found OPEN ACCESS Remote Sens. 2013, 5 2899 that when plant available water is low, the SIWSI anomalies increase over time, while the NDVI anomalies decrease over time, but less systematically. Therefore SIWSI may carry important complementary information to NDVI in terms of vegetation water status, and can provide this information with the unique combination of temporal and spatial resolution from optical geostationary observations over Sahel. However, the relation between SIWSI anomalies and periods of water stress were not found to be sufficiently robust to be used for water stress detection.
منابع مشابه
The impact of vegetation and soil parameters in simulations of surface energy and water balance in the semi-arid sahel: A case study using SEBEX and HAPEX-Sahel data
A series of numerical experiments has been designed to understand the physics at the land surface–atmosphere interface in the Sahel and to find the major parameters and parameterizations that are crucial to simulate arid climate processes. Observational data sets from the Sahelian Energy Balance Experiment (SEBEX) and the Hydrological Atmospheric Pilot Experiment (HAPEX-Sahel) were used to help...
متن کاملEvaluating Water Controls on Vegetation Growth in the Semi-Arid Sahel Using Field and Earth Observation Data
Water loss is a crucial factor for vegetation in the semi-arid Sahel region of Africa. Global satellite-driven estimates of plant CO2 uptake (gross primary productivity, GPP) have been found to not accurately account for Sahelian conditions, particularly the impact of canopy water stress. Here, we identify the main biophysical limitations that induce canopy water stress in Sahelian vegetation a...
متن کاملEstimation of Herbaceous Fuel Moisture Content Using Vegetation Indices and Land Surface Temperature from MODIS Data
The monitoring of herbaceous fuel moisture content is a crucial activity in order to assess savanna fire risks. Faced with the difficulty of managing wide areas of vegetated surfaces, remote sensing appears an attractive alternative for terrestrial measurements because of its advantages related to temporal resolution and spatial coverage. Earth observation (EO)-based vegetation indices (VIs) an...
متن کاملRelationship between net radiation and solar radiation for semi-arid shrub-land
This paper presents the results obtained by analysing a set of measurements of surface radiation balance components at a semi-arid location in SE Spain. The relationships between net and surface shortwave radiation were explored by using 38 months of 5 min surface radiation. The study area is covered by sparse clumped shrub-land of different species, although close to the radiometric station Re...
متن کاملLand Surface Model and Particle Swarm Optimization Algorithm Based on the Model-Optimization Method for Improving Soil Moisture Simulation in a Semi-Arid Region
Improving the capability of land-surface process models to simulate soil moisture assists in better understanding the atmosphere-land interaction. In semi-arid regions, due to limited near-surface observational data and large errors in large-scale parameters obtained by the remote sensing method, there exist uncertainties in land surface parameters, which can cause large offsets between the sim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 5 شماره
صفحات -
تاریخ انتشار 2013